Computational Bayesian Statistics - STATS326 (2020)
Bayesian approach has the potential to model any complex real life problem. In practice, Bayesian methods are implemented using various computational algorithms. This paper introduces the basics of some of the most widely used computational methods, viz the ABC method and the MCMC methods.
Paper Information
Points: | 15.0 |
---|---|
Prerequisite(s): | STAT221 or STATS221 or STAT226 or STATS226 or at the discretion of the Paper Convenor. |
Internal assessment / examination: | 100:0 |
Restriction(s): | STAT326 |
Trimesters and Locations
Occurrence Code | When taught | Where taught |
---|---|---|
20B (HAM) | B Trimester : 13 Jul 2020 - 8 Nov 2020 | Hamilton |
Timetabled Lectures for Computational Bayesian Statistics (STATS326)
Day | Start | End | Room | Dates |
---|---|---|---|---|
Tue | 2:00 PM | 4:00 PM | G.3.33 | Jul 13 - Oct 18 |
Thu | 3:00 PM | 4:00 PM | G.3.33 | Jul 13 - Oct 18 |
NB:There may be other timetabled events for this paper such as tutorials or workshops.
Visit the online timetable for STATS326 for more details
Indicative Fees for Computational Bayesian Statistics (STATS326)
Occurrence | Domestic | International | |
---|---|---|---|
Tuition | Resource | ||
20B (HAM) | $780 | $3145 |
Paper Outlines for Computational Bayesian Statistics (STATS326)
The following paper outlines are available for Computational Bayesian Statistics (STATS326).
If your paper occurrence is not listed contact the Faculty or School office.
Additional Information
Available Subjects: Data Analytics | Statistics
Other available years: Computational Bayesian Statistics - STATS326 (2021) , Computational Bayesian Statistics - STATS326 (2019)
Paper details current as of : 26 February 2021 9:49am
Indicative fees current as of : 27 February 2021 4:30am